Structure–property correlation over five phases and four transitions in Pb5Al3F19

Author:

Abrahams S. C.,Ravez J.,Ritter H.,Ihringer J.

Abstract

The calorimetric and dielectric properties of Pb5Al3F19 in the five phases stable under ambient pressure are correlated with structure for fuller characterization of each phase. The first-order transition between ferroelectric phase V and antiferroelectric phase IV at T V,IV = 260 (5) K exhibits a thermal hysteresis of 135 (5) K on heating, with a maximum atomic displacement Δ(xyz)max = 1.21 (6) Å; the transition from phase IV to ferroelastic phase III at 315 (5) K is also first order but with a thermal hysteresis of 10 (5) K and Δ(xyz)max = 0.92 (7)  Å; that from phase III to paraelastic phase II at 360 (5) K is second order without hysteresis and has Δ(xyz)max = 0.69 (4) Å; and the transition from phase II to paraelectric phase I at 670 (5) K is second or higher order, with Δ(xyz)max = 0.7 (4) Å. The measured entropy change ΔS at T V,IV agrees well with ΔS as derived from the increased configurational energy by Stirling's approximation. For all other phase transitions, 0.5 ≥ ΔS > 0 J mol−1 K−1 is consistent with an entropy change caused primarily by the changes in the vibrational energy. The structure of phase III is determined both by group theoretical/normal mode analysis and by consideration of the structures of phases II, IV and V reported previously; refinement is by simultaneous Rietveld analysis of the X-ray and neutron diffraction powder profiles. The structure of prototypic phase I is predicted on the basis of the atomic arrangement in phases II, III, IV and V. The introduction of 3d electrons into the Pb5Al3F19 lattice disturbs the structural equilibrium, the addition of 0.04% Cr3+ causing significant changes in atomic positions and increasing T IV,III by ∼15 K. Substitution of Al3+ by 20% or more Cr3+ eliminates the potential minima that otherwise stabilize phases IV, III and II.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3