Unique thermodynamic relationships for Δf H o and Δf G o for crystalline inorganic salts. I. Predicting the possible existence and synthesis of Na2SO2 and Na2SeO2

Author:

Vegas Ángel,Liebman Joel F.,Jenkins H. Donald Brooke

Abstract

The concept that equates oxidation and pressure has been successfully utilized in explaining the structural changes observed in the M 2S subnets of M 2SO x (x = 3, 4) compounds (M = Na, K) when compared with the structures (room- and high-pressure phases) of their parent M 2S `alloy' [Martínez-Cruz et al. (1994), J. Solid State Chem. 110, 397–398; Vegas (2000), Crystallogr. Rev. 7, 189–286; Vegas et al. (2002), Solid State Sci. 4, 1077–1081]. These structural changes suggest that if M 2SO2 would exist, its cation array might well have an anti-CaF2 structure. On the other hand, in an analysis of the existing thermodynamic data for M 2S, M 2SO3 and M 2SO4 we have identified, and report, a series of unique linear relationships between the known Δf H o and Δf G o values of the alkali metal (M) sulfide (x = 0) and their oxyanion salts M 2SO x (x = 3 and 4), and the similarly between M 2S2 disulfide (x = 0) and disulfur oxyanion salts M 2S2O x (x = 3, 4, 5, 6 and 7) and the number of O atoms in their anions x. These linear relationships appear to be unique to sulfur compounds and their inherent simplicity permits us to interpolate thermochemical data (Δf H o) for as yet unprepared compounds, M 2SO (x = 1) and M 2SO2 (x = 2). The excellent linearity indicates the reliability of the interpolated data. Making use of the volume-based thermodynamics, VBT [Jenkins et al. (1999), Inorg. Chem. 38, 3609–3620], the values of the absolute entropies were estimated and from them, the standard Δf S o values, and then the Δf G o values of the salts. A tentative proposal is made for the synthesis of Na2SO2 which involves bubbling SO2 through a solution of sodium in liquid ammonia. For this attractive thermodynamic route, we estimate ΔG o to be approximately −500 kJ mol−1. However, examination of the stability of Na2SO2 raises doubts and Na2SeO2 emerges as a more attractive target material. Its synthesis is likely to be easier and it is stable to disproportionation into Na2S and Na2SeO4. Like Na2SO2, this compound is predicted to have an anti-CaF2 Na2Se subnet.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3