Anisotropic displacement parameters for H atoms using an ONIOM approach

Author:

Whitten Andrew E.,Spackman Mark A.

Abstract

X-ray diffraction data cannot provide anisotropic displacement parameters (ADPs) for H atoms, a major outstanding problem in charge-density analysis of molecular crystals. Although neutron diffraction experiments are the preferred source of this information, for a variety of reasons they are possible only for a minority of materials of interest. To date, approximate procedures combine rigid-body analysis of the molecular heavy-atom skeleton, based on ADPs derived from the X-ray data, with estimates of internal motion provided by spectroscopic data, analyses of neutron diffraction data on related compounds, or ab initio calculations on isolated molecules. Building on these efforts, an improved methodology is presented, incorporating information on internal vibrational motion from ab initio cluster calculations using the ONIOM approach implemented in GAUSSIAN03. The method is tested by comparing model H-atom ADPs with reference values, largely from neutron diffraction experiments, for a variety of molecular crystals: benzene, 1-methyluracil, α-glycine, xylitol and 2-methyl-4-nitroaniline. The results are impressive and, as the method is based on widely available software, and is in principle widely applicable, it offers considerable promise in future charge-density studies of molecular crystals.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3