Author:
Lommerse J. P. M.,Cole J. C.
Abstract
A statistical analysis of entries from the CSD (Cambridge Structural Database) showed that the average hydrogen-bond geometry to the nitrogen acceptor atom of the thiocyanate anion was not collinear with respect to the molecular axis of the anion and so not collinear with the nitrogen lone pair [Tchertanov & Pascard (1996). Acta Cryst. B52, 685–690]. This somewhat unexpected result has been investigated further using theoretical energy calculations applying Intermolecular Perturbation Theory in combination with a more detailed statistical analysis of an appropriate CSD dataset. The energy calculations pointed to the formation of the strongest hydrogen bonds in the nitrogen lone-pair direction. The statistical analysis showed that this directionality occurs in cases where the N atom accepts one hydrogen bond only. The non-linear average hydrogen-bond geometry observed in the earlier study can be attributed to multiple hydrogen bonding to the N atom. In such cases, there is a shift away from the optimum orientation.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献