Hydrophobic `lock and key' recognition of N-4-nitrobenzoylamino acid by strychnine

Author:

Białońska Agata,Ciunik Zbigniew

Abstract

During racemic resolution of N-4-nitrobenzoyl-DL-amino acids (alanine, serine and aspartic acid) by a fractional crystallization of strychninium salts, crystals of both diastereomeric salts were grown, and the crystal structures of strychninium N-4-nitrobenzoyl-L-alaninate methanol disolvate (1a), strychninium N-4-nitrobenzoyl-D-alaninate dihydrate (1b), strychninium N-4-nitrobenzoyl-D-serinate dihydrate (2a), strychninium N-4-nitrobenzoyl-L-serinate methanol solvate hydrate (2b), strychninium hydrogen N-4-nitrobenzoyl-L-aspartate 3.75 hydrate (3a) and strychninium hydrogen N-4-nitrobenzoyl-D-aspartate 2.25 hydrate (3b) were determined. The strychninium cations form corrugated layers, which are separated by hydrogen-bonded anions and solvent molecules. Common features of the corrugated layers are deep hydrophobic grooves at their surfaces, which are occupied by the 4-nitrobenzoyl groups of suitable anions. The hydrophobic `lock and key' recognition of 4-nitrobenzoyl groups of amino acid derivatives in deep grooves of the strychnine self-assembly causes the resulting surface to have more hydrophilic properties, which are more appropriate for interactions in the hydrophilic environments from which strychninium salts were crystallized. In the crystal structure of (2a) and (3a), such hydrophobic `lock and key' recognition is responsible for the lack of N—H+...O hydrogen bonds that are usually formed between the protonated tertiary amine N atom of the strychninium cation and the deprotonated carboxyl group of the resolved acid. In the crystal structure of (2a) and (3a), the protonated amine N atom is a donor of hydrogen bonds, while the hydroxyl group of the serine derivative and water molecules are their acceptors. In light of the hydrophobic recognition, chiral discrimination depends on the nature of the hydrogen-bond networks, which involve anions, solvent molecules and the protonated amine N atom of strychninium cations.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3