Model for the crystal packing and conformational changes of biphenyl in incommensurate phase transitions

Author:

Dzyabchenko Alexander,Scheraga Harold A.

Abstract

Standard atom–atom potentials for hydrocarbons and a torsional potential to account for the π-electron conjugation energy were used to model the crystal structures and phase transitions of biphenyl. The model describes the high-temperature phase (I) with its planar molecule as a stationary point of the energy hypersurface. Phase I represents a low-energy barrier between the symmetry minima of the ground state (phase III), in which the molecule is twisted with torsion angles of opposite sign. Global-energy minimization was carried out by considering both regular structures, with one or two independent molecules, and quasi-one-dimensional superstructures built of N cells (N up to 16) of the high-temperature structure. The various energy-minimized biphenyl structures demonstrate remarkable similarity in their crystal packing; in particular, there are characteristic rows of cooperatively twisted molecules parallel to the superstructure dimension b. The structures built of centrosymmetric rows (P\bar 1, Z = 4 and 8) are almost as low in energy as the basic structure (an N = 2 superstructure, Pa, Z = 4); moreover, one of them is isostructural with the low-temperature p-quaterphenyl structure. With N > 8, structures of lower energy than that of the basic structure (N = 2) were found; their common feature is an M-fold modulation of the twist angle over the supercell period, with M smaller than N and generally not a simple fraction of it. The global minimum was found to conform to the ratio k = M/N = 6/14, which is close to the experimentally observed k = 6/13 in the incommensurate phase III. Enthalpy minimization showed an overall decrease in the magnitude of the twist angle down to τ ≃ 0°, as well as the evolution of the modulated structures towards the high-temperature structure with increasing pressure, in agreement with evidence for the high-pressure limit of the incommensurate biphenyl phases.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3