Abstract
An ongoing analysis of the supramolecular self-assembly of disubstituted cycloalkanes has led to the discovery of seven packing patterns built up from hydrogen-bonded homo- and heterochiral chains of racemic molecules, associated in either antiparallel or parallel arrays [Kálmán et al. (2001). Acta Cryst. B57, 539–550]. Two further patterns have been revealed in the close packing of analogous alicyclic β-amino acids [Fábián et al. (2005). Cryst. Growth Des.
5, 773–782]. Since each pattern is represented by at least one crystal structure, the chemical similarity and crystallographic forms of these crystals have facilitated the recognition that these patterns differ by one or two rotation(s) of the common motifs (e.g. dimers, tetramers, helices etc.), or the whole pattern may rotate through 180° in an oblique unit cell. Such non-crystallographic – with the exception of polymorphism – virtual rotations as a whole may be denoted by the expression morphotropism. According to Kitaigorodskii [(1961), Organic Chemical Crystallography, pp. 222–231. New York: Consultants Bureau], morphotropism is an attempt to keep the packing coefficient above 0.6 whenever there are alternative possibilities for the structures of closely related molecules. It has been found that crystals of stereoisomers are also frequently related by such virtual rotations. Similarly, non-crystallographic rotations effect bridges between homostructural crystals [Kálmán et al. (1993b). Acta Cryst. B49, 1039–1049] and occasionally hallmark the polymorphism of organic compounds [Kálmán et al. (2003) J. Am. Chem. Soc.
125, 34–35]. In polymorphs, however, such rotations really transform one molecule into another in order to achieve a better packing mediated by solvents, temperature etc.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献