Author:
Ziao Nahossé,Graton Jérôme,Laurence Christian,Le Questel Jean-Yves
Abstract
The relative hydrogen-bond acceptor abilities of amino and cyano N atoms have been investigated using data retrieved from the Cambridge Structural Database and via ab initio molecular orbital calculations. Surveys of the CSD for hydrogen bonds between HX (X = N, O) donors, N—T—C≡N (push–pull nitriles) and N—(Csp
3)
n
—C≡N molecular fragments show that the hydrogen bonds are more abundant on the nitrile than on the amino nitrogen. In the push–pull family, in which T is a transmitter of resonance effects, the hydrogen-bonding ability of the cyano nitrogen is increased by conjugative interactions between the lone pair of the amino substituent and the C≡N group: a clear example of resonance-assisted hydrogen bonding. The strength of the hydrogen-bonds on the cyano nitrogen in this family follows the experimental order of hydrogen-bond basicity, as observed in solution through the pK
HB scale. The number of hydrogen bonds established on the amino nitrogen is greater for aliphatic aminonitriles N—(Csp
3)
n
—C≡N, but remains low. This behaviour reflects the greater sensitivity of the amino nitrogen to steric hindrance and the electron-withdrawing inductive effect compared with the cyano nitrogen. Ab initio molecular orbital calculations (B3LYP/6-31+G** level) of electrostatic potentials on the molecular surface around each nitrogen confirm the experimental observations.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献