Analytical model for neutron diffraction peak shifts due to the surface effect

Author:

Šaroun Jan,Kornmeier Joana Rebelo,Hofmann Michael,Mikula Pavol,Vrána Miroslav

Abstract

Residual strains measured by neutron diffraction near sample boundaries can be biased by the surface effect as a result of incomplete filling of the instrumental gauge volume. This effect is manifested as anomalous shifts of diffraction lines, which can be falsely interpreted as a lattice strain unless appropriate data corrections are made. A new analytical model for the surface effect has been developed, which covers a broad variety of instrumental arrangements, including flat mosaic and bent perfect crystal monochromators, narrow slits, and Soller and radial collimators. This model permits the spurious peak shifts to be predicted quantitatively, and also allows the optimum configuration parameters, such as curvature of a focusing monochromator, which lead to suppression of the surface effect, to be calculated. The model has been thoroughly validated by comparisons with Monte Carlo simulations and experiments on a stress-free calibration sample. Predictions of the model proved to be very accurate, often within the interval of experimental errors, which makes it suitable for use in data analysis.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensitivity of reference stress-free values in welds residual stress calculation;Materials Science and Engineering: A;2020-07

2. Effects of finish turning on an austenitic weld investigated using diffraction methods;The International Journal of Advanced Manufacturing Technology;2020-05

3. Monte Carlo simulation of neutron scattering by a textured polycrystal;Journal of Applied Crystallography;2020-03-30

4. The influence of coverage for high frequency mechanical impact treatment of different steel grades;Journal of Materials Processing Technology;2020-03

5. Non-destructive Neutron Surface Residual Stress Analysis;Journal of Nondestructive Evaluation;2019-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3