Author:
Keeble Dean S.,Thomas Pamela A.
Abstract
The room-temperature phase of the important ferroelectric material barium titanate, BaTiO3, was re-investigated by single-crystal X-ray diffraction on a sample grown by the top-seeded solution growth method, with the intention of demonstrating once again that the structure has tetragonal symmetry consistent with the space-group assignmentP4mmand thus resolving recent controversy in the scientific community and literature [Yoshimura, Kojima, Tokunaga, Tozaki & Koganezawa (2006).Phys. Lett. A,353, 250–254; Yoshimura, Morioka, Kojima, Tokunaga, Koganezawa & Tozaki (2007).Phys. Lett. A,367, 394–401]. To this end, the X-ray diffraction pattern of a small (341 µm3) sample of top-seeded solution-grown BaTiO3was measured using an Oxford Diffraction Gemini CCD diffractometer employing Mo Kα radiation and an extended 120 mm sample-to-detector distance. More than 104individual diffraction maxima observed out to a maximum resolution of 0.4 Å were indexed on two tetragonal lattices. These were identical to within the standard deviations on the lattice parameters and were related to each other by a single rotation of 119.7° about the [11\overline1] direction of the first tetragonal lattice (the major twin component), although the actual twinning operation that explains the observed diffraction pattern both qualitatively and quantitatively is shown to be conventional 90° twinning by them[101] operation. Importantly, it is not necessary to invoke either monoclinic symmetry or a coexistence of tetragonal and monoclinic phases to explain the observed diffraction data.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献