Modelling of small-angle X-ray scattering data using Hermite polynomials

Author:

Swain A. K.,Parida J. K.,Bisoyi D. K.,Mazumder S.,Mohanty A. K.

Abstract

A new algorithm, called the term-selection algorithm (TSA), is derived to treat small-angle X-ray scattering (SAXS) data by fitting models to the scattering intensity using weighted Hermite polynomials. This algorithm exploits the orthogonal property of the Hermite polynomials and introduces an error-reduction ratio test to select the correct model terms or to determine which polynomials are to be included in the model and to estimate the associated unknown coefficients. With noa prioriinformation about particle sizes, it is possible to evaluate the real-space distribution function as well as three- and one-dimensional correlation functions directly from the models fitted to raw experimental data. The success of this algorithm depends on the choice of a scale factor and the accuracy of orthogonality of the Hermite polynomials over a finite range of SAXS data. An algorithm to select a weighted orthogonal term is therefore derived to overcome the disadvantages of the TSA. This algorithm combines the properties and advantages of both weighted and orthogonal least-squares algorithms and is numerically more robust for the estimation of the parameters of the Hermite polynomial models. The weighting feature of the algorithm provides an additional degree of freedom to control the effects of noise and the orthogonal feature enables the reorthogonalization of the Hermite polynomials with respect to the weighting matrix. This considerably reduces the error in orthogonality of the Hermite polynomials. The performance of the algorithm has been demonstrated considering both simulated data and experimental data from SAXS measurements of dewaxed cotton fibre at different temperatures.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some types Horadam polynomials for solving mathematical model describe fungal diseases;2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY;2023

2. Numerical solution for mathematical model of nutrient influence of fungal competition via types of Horadam polynomials;PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022;2023

3. Molecular weight effect on the structural detail and chain characteristics of 33-armed star polystyrene;Polymer;2021-01

4. An iterative method to extract the size distribution of non-interacting polydisperse spherical particles from small-angle scattering data;Journal of Applied Crystallography;2014-03-28

5. Determining pair distance distribution function from SAXS data using parametric functionals;Journal of Structural Biology;2012-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3