On the role of nitrogen in stiffening the diamond structure

Author:

Nailer Stuart Geoffrey,Moore Moreton,Chapman John,Kowalski Grzegorz

Abstract

Three large (4–7 mm) natural diamonds, each half brown and half white, from the Argyle Diamond Mine in Western Australia, have been studied for growth history and crystal perfection. Scanning electron microscopy and X-ray single-crystal topography showed the diamonds to have good octahedral morphologies but poor internal perfection. X-ray double-crystal topography quantified this lack of perfection, rocking-curve widths taking unusually large values of 300 and 75 s of arc for the brown and white regions, respectively, in a diffraction geometry for which 3 s of arc would be expected for a perfect diamond. Fourier transform infrared spectroscopy revealed significant differences in nitrogen concentration between the brown and white regions of the diamonds. The white regions, with 400 to 600 p.p.m. nitrogen, contained over 1.6 times more nitrogen than the brown regions. It is concluded that the extra nitrogen (in A and B forms) in the white regions stiffens the lattice against distortion by natural plastic deformation.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3