Author:
Pramanick A.,Lauter V.,Wang X.-L.,An K.,Ambaye H.,Goyette Jr R. J.,Yi J.,Gai Z.,Stoica A. D.
Abstract
The availability of high-power spallation neutron sources, along with advances in the development of coupled moderators and neutron polarizers, has made it possible to use polarized neutrons on time-of-flight diffractometers forin situstudies of phenomena contributing to field-induced magnetization of a material. Different electronic and structural phenomena that contribute to the overall magnetization of a material can be studied and clearly identified with polarized neutron diffraction measurements. This article reports the first results from polarized neutron diffraction experiments on a time-of-flight instrument at a spallation source. Magnetic field-induced rotation of electron spins in an Ni–Mn–Ga single crystal was measured with polarized neutron diffraction at the MAGICS reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. The difference in intensities measured with spin-up and spin-down polarized neutrons is proportional to the field-induced magnetization of the crystal. The polarized neutron measurements indicate that the magnetic form factor for the 3delectrons of Mn in Ni–Mn–Ga is lower than the value reported earlier for an ideal spherical symmetry of electronic distribution. Future experiments for studying field-induced magnetization in materials following the current methodology are outlined.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献