In situsimultaneous Raman/high-resolution X-ray powder diffraction study of transformations occurring in materials at non-ambient conditions

Author:

Boccaleri Enrico,Carniato Fabio,Croce Gianluca,Viterbo Davide,van Beek Wouter,Emerich Hermann,Milanesio Marco

Abstract

Materials containing disordered moieties and/or amorphous or liquid-like phases or showing surface- or defect-related phenomena constitute a problem with respect to their characterization using X-ray powder diffraction (XRPD), and in many cases Raman spectroscopy can provide useful complementary information. A novel experimental setup has been designed and realized for simultaneousin situRaman/high-resolution XRPD experiments, to take full advantage of the complementarities of the two techniques in investigating solid-state transformations under non-ambient conditions. The added value of the proposed experiment is the perfect synchronization of the two probes with the reaction coordinate and the elimination of possible bias caused by different sample holders and conditioning modes used in `in situbut separate' approaches. The setup was tested on three solid-state transformations: (i) the kinetics of the fluorene–TCNQ solid-state synthesis, (ii) the thermal swelling and degradation of stearate–hydrotalcite, and (iii) the photoinduced (2 + 2)-cyclization of (E)-furylidenoxindole. These experiments demonstrated that, even though the simultaneous Raman/XRPD experiment is more challenging than separate procedures, high-resolution XRPD and Raman data can be collected. A gas blower allows studies from room temperature to 700 K, and 100 K can be reached using a nitrogen cryostream. The flexibility of the experimental setup allows the addition of ancillary devices, such as a UV lamp used to study photoreactivity.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3