Parametric Rietveld refinement for the evaluation of powder diffraction patterns collected as a function of pressure

Author:

Halasz Ivan,Dinnebier Robert E.,Angel Ross

Abstract

Under the assumption that the structural parameters of a crystalline phase change `smoothly' with increasing pressure, the evolution of the parameters can be parameterized as a function of pressure using continuous monotonic functions. Four different approaches to determine the structural evolution of As2O5with increasing pressure from a set of powder diffraction patterns collected over the pressure range from 2.5 to 19.5 GPa have been investigated. Approach (A) was the common sequential refinement of atomic coordinates with restraints on the geometry and was compared with three parameterization approaches. Approach (B) used direct parameterization by low-order polynomials of each crystallographically distinct atomic coordinate, (C) described the atoms of the asymmetric unit as a rigid body and allowed the internal degrees of freedom of the rigid body to vary with the change in pressure using rigid unit modes, and (D) described the crystal structure as a distortion of the higher-symmetry structure of As2O5(which is here also a high-temperature phase) by using symmetry-adapted distortion modes. Approach (D) offers the possibility to directly introduce an order parameter into Rietveld refinement through an empirical power law derived from Landau theory and thus to obtain the value of the critical exponent. In contrast, the rigid-body approach did not fit the data as well. All parameterizations greatly reduce the number of required parameters.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3