Enumeration and Classification of Anomaly/Peak Bases in Two-Dimensional Intensity Histograms. Application of Graph Theory to Crystallographic Data Imaging

Author:

Reibenspies J. H.

Abstract

Bragg-event peaks, spikes, intensity streaks and other anomalies generate abnormal regions in two-dimensional intensity histograms from area-detector images. Examination of the shapes of these regions can contribute to the identification of the types of phenomena that generated them. The points that define the anomaly bases, when connected with imaginary lines, form unique graphs. Individual graphs, in turn, can be enumerated by employing graph-theoretical notation and the graph shapes classified. The number of lines in any given graph can also be determined by summing the degrees of the graph points and dividing by two. The ratio of the number of lines per point is a direct indication of the shape of the anomaly base. Long linear and curved shapes, like those associated with intensity streaks and powder rings, will have small lines-per-point ratios, while compact round, square or oval shapes, similar to those belonging to Bragg-event peaks, will have larger lines-per-point ratios. For any given number of points (Np ), for any given graph, the minimum number of lines (q) will equal Np − 1, while the maximum number of lines (q max, Np ) is determined from a round-shaped graph. A graph-shape parameter (GS) can thus be defined as (qNp − 1)/(q max. Np Np − 1), where a value near one indicates a round graph shape and a value near zero indicates a linear graph shape. The application of graph-theoretical techniques to anomaly bases can thus provide insight into the nature of the intensities distributed throughout the two-dimensional crystallographic data image.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3