Crystalline microstructure of sepiolite influenced by grinding

Author:

Kojdecki Marek Andrzej,Bastida Joaquín,Pardo Pablo,Amorós Pedro

Abstract

The crystalline microstructure of ground sepiolite has been investigated. A reference sample of sepiolite and products of its comminution by dry grinding were studied through X-ray diffraction pattern analysis, specific surface measurements by nitrogen adsorption and complementary analysis of field emission scanning electron microscope images. A statistical model of polycrystals was applied to describe and determine the crystalline microstructure of the studied specimens. The model parameters characterizing the microstructure were prevalent crystallite shape, volume-weighted crystallite size distribution and second-order crystalline lattice strain distribution, and they were determined for each sample by modelling a selected part of the X-ray diffraction pattern and fitting the simulated pattern to a measured one. A strict correlation of microstructure parameters with grinding time and with specific surface magnitudes was observed. A parallelepiped with edge-length ratios almost independent of grinding time (for longer times) was found to be the predominant crystallite shape. The crystallite size distributions were found to be close to logarithmic normal ones, with the mean values decreasing with increasing grinding time and the standard-deviation-to-mean-value ratios approximately constant. The second-order crystalline lattice strain distributions were found to be close to some simple function with the mean value equal to zero, the mean deviation increasing with increasing grinding time and the standard-to-mean-deviation ratios approximately constant. It was demonstrated that the specific surface can be calculated on the basis of the microstructure characteristics. Some details of the relation between crystallites and crystalline grains were explained by comparing the results of analysesviaX-ray diffraction and scanning electron microscopy.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3