Patterson selectivity by modulation-enhanced diffraction

Author:

Caliandro Rocco,Chernyshov Dmitry,Emerich Hermann,Milanesio Marco,Palin Luca,Urakawa Atsushi,van Beek Wouter,Viterbo Davide

Abstract

Modulation excitation spectroscopy is a powerful and well established technique for investigating the dynamic behaviour of chemical and physical systems. Recently, an expansion of this technique for diffraction was proposed and the theory deriving the diffraction response of a crystal subjected to a periodically varying external perturbation was developed [Chernyshov, van Beek, Emerich, Milanesio, Urakawa, Viterbo, Palin & Caliandro (2011).Acta Cryst.A67, 327–335]. The result of this is that a substructure composed of atoms actively responding to the stimulus may be separated out by analysing the diffraction signal at a frequency twice that of the stimulus. This technique is called modulation-enhanced diffraction. Here, a version of the theory dealing with the modulation of the site occupancies of a selected subset of atoms is formulated, and this is supported by experiments carried out at the Swiss–Norwegian Beam Lines at the ESRF, involving periodic variation of the xenon content of a polycrystalline zeolite as a function of temperature. The data analysis involves three steps: (i) data selection is carried out to mimic a linear response; (ii) phase-sensitive detection is applied to obtain contributions both from the responding part of the electron density associated with the Xe atoms and from the interference term; (iii) a phasing procedure is applied to both. A Patterson deconvolution technique has been successfully used to phase the demodulated diffraction patterns and obtain the active substructure.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New features of the RootProf program for model-free analysis of unidimensional profiles;Journal of Applied Crystallography;2023-10-20

2. Modulation Excitation Spectroscopy (MES);Springer Handbook of Advanced Catalyst Characterization;2023

3. Case Studies: Crystallography as a Tool for Studying Methanol Conversion in Zeolites;Springer Handbook of Advanced Catalyst Characterization;2023

4. Methodologies to Hunt Active Sites and Active Species;Heterogeneous Catalysts;2021-02-26

5. Multivariate Analysis Applications in X-ray Diffraction;Crystals;2020-12-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3