Analysis of scattering from polydisperse structure using Mellin convolution

Author:

Stribeck Norbert

Abstract

This study extends a mathematical concept for the description of heterogeneity and polydispersity in the structure of materials to multiple dimensions. In one dimension, the description of heterogeneity by means of Mellin convolution is well known. In several papers by the author, the method has been applied to the analysis of data from materials with one-dimensional structure (layer stacks or fibrils along their principal axis). According to this concept, heterogeneous structures built from polydisperse ensembles of structural units are advantageously described by the Mellin convolution of a representative template structure with the size distribution of the templates. Hence, the polydisperse ensemble of similar structural units is generated by superposition of dilated templates. This approach is particularly attractive considering the advantageous mathematical properties enjoyed by the Mellin convolution. Thus, average particle size, and width and skewness of the particle size distribution can be determined from scattering data without the need to model the size distributions themselves. The present theoretical treatment demonstrates that the concept is generally extensible to dilation in multiple dimensions. Moreover, in an analogous manner, a representative cluster of correlated particles (e.g.layer stacks or microfibrils) can be considered as a template on a higher level. Polydispersity of such clusters is, again, described by subjecting the template structure to the generalized Mellin convolution. The proposed theory leads to a simple pathway for the quantitative determination of polydispersity and heterogeneity parameters. Consistency with the established theoretical approach of polydispersity in scattering theory is demonstrated. The method is applied to the best advantage in the field of soft condensed matter when anisotropic nanostructured materials are to be characterized by means of small-angle scattering (SAXS, USAXS, SANS).

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3