Author:
Vočadlo Lidunka,Wood Ian G.,Dobson David P.
Abstract
First-principles calculations have been used to determine the equation of state and structural properties of NiSi up to pressures equivalent to that in the Earth's inner core. At atmospheric pressure, the thermodynamically stable phase is that with the MnP structure (as found experimentally). At high pressures, NiSi shows phase transformations to a number of high-pressure polymorphs. For pressures greater than ∼250 GPa, the thermodynamically stable phase of NiSi is that with the CsCl structure, which persists to the highest pressures simulated (∼500 GPa). At the pressures of the Earth's inner core, therefore, NiSi and FeSi will be isostructural and thus are likely to form a solid solution. The density contrast between NiSi and FeSi at inner-core pressures is ∼6%, with NiSi being the denser phase. Therefore, if a CsCl-structured (Fe,Ni)Si alloy were present in the inner core, its density (for the commonly assumed nickel content) might be expected to be ∼1% greater than that of pure FeSi.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献