Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure thermomechanics

Author:

Zhao Yusheng,Zhang Jianzhong

Abstract

An analytical method is presented for deriving the thermomechanical properties of polycrystalline materials under high-pressure (P) and high-temperature (T) conditions. This method deals with non-uniform stress among heterogeneous crystal grains and surface strain in nanocrystalline materials by examining peak-width variation under differentPTconditions. Because the method deals directly with latticedspacing and local deformation caused by stress, it can be applied to process any diffraction profile, independent of detection mode. In addition, a correction routine is developed using diffraction elastic ratios to deal with severe surface strain and/or strain anisotropy effects related to nano-scale grain sizes, so that significant data scatter can be reduced in a physically meaningful way. Graphical illustration of the resultant microstrain analysis can identify micro/local yields at the grain-to-grain interactions resulting from high stress concentration, and macro/bulk yield of the plastic deformation over the entire sample. This simple and straightforward approach is capable of revealing the corresponding micro and/or macro yield stresses, grain crushing or growth, work hardening or softening, and thermal relaxation under high-PTconditions, as well as the intrinsic residual strain and/or surface strain in the polycrystalline bulk. In addition, this approach allows the instrumental contribution to be illustrated and subtracted in a straightforward manner, thus avoiding the potential complexities and errors resulting from instrument correction. Applications of the method are demonstrated by studies of α-SiC (6H, moissanite) and of micro- and nanocrystalline nickel by synchrotron X-ray and time-of-flight neutron diffraction.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3