Author:
Ludwig Wolfgang,Schmidt Søeren,Lauridsen Erik Mejdal,Poulsen Henning Friis
Abstract
The principles of a novel technique for nondestructive and simultaneous mapping of the three-dimensional grain and the absorption microstructure of a material are explained. The technique is termed X-ray diffraction contrast tomography, underlining its similarity to conventional X-ray absorption contrast tomography with which it shares a common experimental setup. The grains are imaged using the occasionally occurring diffraction contribution to the X-ray attenuation coefficient each time a grain fulfils the diffraction condition. The three-dimensional grain shapes are reconstructed from a limited number of projections using an algebraic reconstruction technique. An algorithm based on scanning orientation space and aiming at determining the corresponding crystallographic grain orientations is proposed. The potential and limitations of a first approach, based on the acquisition of the direct beam projection images only, are discussed in this first part of the paper. An extension is presented in the second part of the paper [Johnson, King, Honnicke, Marrow & Ludwig (2008).J. Appl. Cryst.41, 310–318], addressing the case of combined direct and diffracted beam acquisition.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
222 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献