Abstract
The energy-dispersive neutron transmission of mosaic crystals presents a series of dips in intensity as a result of reflection in the crystal planes. The positions of these dips can be exploited for the definition of the crystal orientation with a resolution of 1 min of arc. The widths of these dips depend on crystal orientation, on the reflection index, on the mosaicity, and on the incident-beam divergence. The capability of the technique to define the orientation and mosaicity of a Cu crystal has been assessed through time-of-flight experiments. A Cu monochromator has been plastically deformed by uniaxial tensionin situ, and the evolution of crystal orientation and mosaicity was tracked using the technique. Several crystal reflections at different locations of the sample were simultaneously studied during the experiment. A linear increase of mosaicity on deformation at an average rate of ∼5 min per percentage of shear strain was observed. The reorientation of the crystal as a result of the applied load showed variations across the specimen.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献