A novel three-dimensional copper(I) cyanide coordination polymer constructed from various bridging ligands: synthesis, crystal structure and characterization

Author:

Qin Ying-Lian,Sun Hong,Jing Yan,Jiang Xiu-Ping,Wang Gao-Feng,Qin Jian-Fang

Abstract

The cyanide ligand can act as a strong σ-donor and an effective π-electron acceptor that exhibits versatile bridging abilities, such as terminal, μ2-C:N, μ3-C:C:N and μ4-C:C:N:N modes. These ligands play a key role in the formation of various copper(I) cyanide systems, including one-dimensional (1D) chains, two-dimensional (2D) layers and three-dimensional (3D) frameworks. According to the literature, numerous coordination polymers based on terminal, μ2-C:N and μ3-C,C,N bridging modes have been documented so far. However, systems based on the μ4-C:C:N:N bridging mode are relatively rare. In this work, a novel cyanide-bridged 3D CuI coordination framework, namely poly[(μ2-2,2′-biimidazole-κ2 N 3:N 3′)(μ4-cyanido-κ4 C:C:N:N)(μ2-cyanido-κ2 C:N)dicopper(I)], [Cu2(CN)2(C6H6N4)] n , (I), was synthesized hydrothermally by reaction of environmentally friendly K3[Fe(CN)6], CuCl2·2H2O and 2,2′-biimidazole (H2biim). It should be noted that cyanide ligands may act as reducing agents to reduce CuII to CuI under hydrothermal conditions. Compound (I) contains diverse types of bridging ligands, such as μ4-C:C:N:N-cyanide, μ2-C:N-cyanide and μ2-biimidazole. Interestingly, the [Cu2] dimers are bridged by rare μ4-C:C:N:N-mode cyanide ligands giving rise to the first example of a 1D dimeric {[Cu24-C:C:N:N)] n+} n infinite chain. Furthermore, adjacent dimer-based chains are linked by μ2-C:N bridging cyanide ligands, generating a neutral 2D wave-like (4,4) layer structure. Finally, the 2D layers are joined together via bidentate bridging H2biim to create a 3D cuprous cyanide network. This arrangement leads to a systematic variation in dimensionality from 1D chain→2D sheet→3D framework by different types of bridging ligands. Compound (I) was further characterized by thermal analysis, solid-state UV–Vis diffuse-reflectance and photoluminescence studies. The solid-state UV–Vis diffuse-reflectance spectra show that compound (I) is a wide-gap semiconductor with band gaps of 3.18 eV. The photoluminescence study shows a strong blue–green photoluminescence at room temperature, which may be associated with metal-to-ligand charge transfer.

Funder

Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of Education, Shanxi Normal University

Young Teacher Starting-up Research of Yuncheng University and University Student Innovation Project

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3