Eight Schiff bases derived from various salicylaldehydes: phenol–imine and keto–amine forms, conformational disorder, and supramolecular assembly in one and two dimensions

Author:

Girisha Marisiddaiah,Sagar Belakavadi K.,Yathirajan Hemmige S.ORCID,Rathore Ravindranath S.ORCID,Kaur Manpreet,Jasinski Jerry P.ORCID,Glidewell Christopher

Abstract

Structures are reported for eight Schiff bases derived from various salicylaldehydes: five are newly synthesized and re-investigations are reported for three previously reported structures, leading, in each case, to some revision of previous conclusions. In (E)-N-(3,4-dimethylisoxazol-5-yl)-4-[(2-hydroxybenzylidene)amino]benzenesulfonamide, C18H17N3O4S, (I), and (E)-4-[(5-bromo-2-hydroxy-3-methoxybenzylidene)amino]-N-(3,4-dimethylisoxazol-5-yl)benzenesulfonamide. C19H18BrN3O5S, (II), the isoxazole rings adopt different orientations relative to the rest of the molecules, despite the additional substituents in (II) being in the aryl ring remote from the isoxazole unit. The molecules of both (E)-4-bromo-2-[(2-hydroxyphenylimino)methyl]-6-methoxyphenol, C14H12BrNO3, (III), and (E)-4-bromo-2-methoxy-6-[(2-methoxyphenylimino)methyl]phenol, C15H14BrNO3, (IV), are both effectively planar; while (III) adopts the phenol–imine constitution, (IV) adopts the keto–amine constitution. (E)-2-Methoxy-6-[(2-methoxyphenylimino)methyl]phenol, C15H15NO3, (V), which was determined previously using powder X-ray data assuming the phenol–imine constitution, has now been refined from single-crystal X-ray data, confirming the phenol–imine constitution. In (E)-3-benzoyl-2-[(5-fluoro-2-hydroxybenzylidene)amino]-4,5,6,7-tetrahydrobenzo[b]thiophene, C22H18FNO2S, (VI), the fused carbocyclic ring exhibits conformational disorder; both disorder components, having populations of 0.705 (4) and 0.295 (4), adopt half-chair conformations. The isostructural (E)-3-benzoyl-2-[(2-hydroxybenzylidene)amino)]-4,5,6,7-tetrahydrobenzo[b]thiophene, C22H19NO2S, (VII), which was originally reported as having a fully ordered structure [Kauret al.(2014).Acta Cryst.E70, o476–o477], has been rerefined using the original data set and found to exhibit the same type of disorder as found in (VI), with disordered populations having occupancies of 0.851 (3) and 0.149 (3). The triclinic polymorph of (E)-[(2-hydroxyphenylimino)methyl]phenol, C13H11NO2, (VIII), which crystallizes withZ′ = 2 in the space groupP-1, has been described variously as occurring as the keto–amine tautomer [Maciejewskaet al.(1999).J. Phys. Org. Chem.12, 875–880] and as the phenol–imine tautomer [Tunçet al.(2009).J. Chem. Crystallogr.39, 672–676]. Rerefinement of this structure using one of the original data sets shows that both of the independent molecules exist in the keto–amine form. In the structures of compounds (I), (VI), (VII) and (VIII), hydrogen bonds generate simple chains, while a chain of rings is formed in (V). Sheets are formed by hydrogen bonds in both (II) and (III), while in (IV), the sheet structure is built from aromatic π–π stacking interactions.

Funder

National Science Foundation, MRI

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

Reference31 articles.

1. Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.

2. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals

3. Schiff bases derived from hydroxyaryl aldehydes: molecular and crystal structure, tautomerism, quinoid effect, coordination compounds

4. The conformation of six-membered rings

5. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3