Abstract
Three new styrylquinoline–chalcone hybrids have been synthesized using a three-step pathway starting with Friedländer cyclocondensation between (2-aminophenyl)chalcones and acetone to give 2-methyl-4-styrylquinolines, followed by selective oxidation to the 2-formyl analogues, and finally Claisen–Schmidt condensation between the formyl intermediates and 1-acetylnaphthalene. All intermediates and the final products have been fully characterized by IR and 1H/13C NMR spectroscopy, and by high-resolution mass spectrometry, and the three products have been characterized by single-crystal X-ray diffraction. The molecular conformations of (E)-3-{4-[(E)-2-phenylethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one, C30H21NO, (IVa), and (E)-3-{4-[(E)-2-(4-fluorophenyl)ethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one, C30H20FNO, (IVb), are very similar. In each compound, the molecules are linked into a three-dimensional array by hydrogen bonds, of the C—H...O and C—H...N types in (IVa), and of the C—H...O and C—H...π types in (IVb), and by two independent π–π stacking interactions. By contrast, the conformation of the chalcone unit in (E)-3-{4-[(E)-2-(2-chlorophenyl)ethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one, C30H20ClNO, (IVc), differs from those in (IVa) and (IVb). There are only weak hydrogen bonds in the structure of (IVc), but a single rather weak π–π stacking interaction links the molecules into chains. Comparisons are made with some related structures.
Funder
Vicerrectoría de Investigación y Extensión of the Industrial University of Santander
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics