A novel tubular hydrogen-bond pattern in a new diazaphosphole oxide: a combination of X-ray crystallography and theoretical study of hydrogen bonds

Author:

Sabbaghi FahimehORCID,Pourayoubi MehrdadORCID,Farhadipour Abolghasem,Ghorbanian Nazila,Andreev Pavel V.

Abstract

In the structure of 2-(4-chloroanilino)-1,3,2λ4-diazaphosphol-2-one, C12H11ClN3OP, each molecule is connected with four neighbouring molecules through (N—H)2...O hydrogen bonds. These hydrogen bonds form a tubular arrangement along the [001] direction built from R 3 3(12) and R 4 3(14) hydrogen-bond ring motifs, combined with a C(4) chain motif. The hole constructed in the tubular architecture includes a 12-atom arrangement (three P, three N, three O and three H atoms) belonging to three adjacent molecules hydrogen bonded to each other. One of the N—H groups of the diazaphosphole ring, not co-operating in classical hydrogen bonding, takes part in an N—H...π interaction. This interaction occurs within the tubular array and does not change the dimension of the hydrogen-bond pattern. The energies of the N—H...O and N—H...π hydrogen bonds were studied by NBO (natural bond orbital) analysis, using the experimental hydrogen-bonded cluster of molecules as the input file for the chemical calculations. In the 1H NMR experiment, the nitrogen-bound proton of the diazaphosphole ring has a high value of 17.2 Hz for the 2 J H–P coupling constant.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3