Structural characterization of the derivatives of bis{[2,6-(dimethylamino)methyl]phenyl} selenide with palladium(II) and mercury(II)

Author:

Gupta Anand,Deka Rajesh,Butcher Ray J.ORCID,Singh Harkesh B.

Abstract

The intramolecularly coordinated homoleptic diorgano selenide bis{2,6-bis[(dimethylamino)methyl]phenyl} selenide, C24H38N4Se or R 2Se, where R is 2,6-(Me2NCH2)2C6H3, 14, was synthesized and its ligation reactions with PdII and HgII precursors were explored. The reaction of 14 with SO2Cl2 and K2PdCl4 resulted in the formation of the meta C—H-activated dipalladated complex {μ-2,2′-bis[(dimethylamino)methyl]-4,4′-bis[(dimethylazaniumyl)methyl]-3,3′-selanediyldiphenyl-κ4 C 1,N 2:C 1′,N 2′}bis[dichloridopalladium(II)], [Pd2Cl4(C24H38N4Se)] or [{R(H)PdCl2}2Se], 15. On the other hand, when ligand 14 was reacted with HgCl2, the reaction afforded a dimercurated selenolate complex, {μ-bis{2,6-bis[(dimethylamino)methyl]benzeneselanolato-κ4 N 2,Se:Se,N 6}-μ-chlorido-bis[chloridomercury(II)], [Hg2(C12H19N2Se)Cl3] or RSeHg2Cl3, 16, where two HgII ions are bridged by selenolate and chloride ligands. In palladium complex 15, there are two molecules located on crystallographic twofold axes and within each molecule the Pd moieties are related by symmetry, but there are still two independent Pd centers. Mercury complex 16 results from the cleavage of one of the Se—C bonds to form a bifurcated SeHg2 moiety with the formal charge on the Se atom being −1. In addition, one of the Cl ligands bridges the two Hg atoms and there are two terminal Hg—Cl bonds. Each Hg atom is in a distorted environment which can be best described as a T-shaped base with the bridging Cl atom in an apical position, with several angles close to 90° and with one angle much larger and closer to 180°.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3