Accurate X-ray diffraction data required for proper evaluation of bond valence sums and global instability indexes: redetermination of the crystal structures of diamond-like Cu2CdSiS4 and Cu2HgSnS4 as a case study

Author:

Treece Megan M.ORCID,Kelly Jordan C.ORCID,Rosello Kate E.,Craig Andrew J.,Aitken Jennifer A.ORCID

Abstract

Our calculations of the global instability index (G) values for some diamond-like materials with the general formula I2–II–IV–VI4 have indicated that the structures may be unstable or incorrectly determined. To compute the G value of a given compound, the bond valence sums (BVSs) must first be calculated using a crystal structure. Two examples of compounds with high G values, based on data from the literature, are the wurtz–stannite-type dicopper cadmium silicon tetrasulfide (Cu2CdSiS4) and the stannite-type dicopper mercury tin tetrasulfide (Cu2HgSnS4), which were first reported in 1967 and 1965, respectively. In the present study, Cu2CdSiS4 and Cu2HgSnS4 were prepared by solid-state synthesis at 1000 and 900 °C, respectively. The phase purity was assessed by powder X-ray diffraction. Optical diffuse reflectance UV/Vis/NIR spectroscopy was used to estimate the optical bandgaps of 2.52 and 0.83 eV for Cu2CdSiS4 and Cu2HgSnS4, respectively. The structures were solved and refined using single-crystal X-ray diffraction data. The structure type of Cu2CdSiS4 was confirmed, where Cd2+, Si4+ and two of the three crystallographically unique S2− ions lie on a mirror plane. The structure type of Cu2HgSnS4 was also verified, where all ions lie on special positions. The S2− ion resides on a mirror plane, the Cu+ ion is situated on a fourfold rotary inversion axis and both the Hg2+ and the Sn4+ ions are located on the intersection of a fourfold rotary inversion axis, a mirror plane and a twofold rotation axis. Using the crystal structures solved and refined here, the G values were reassessed and found to be in the range that indicates reasonable strain for a stable crystal structure. This work, together with some examples gathered from the literature, shows that accurate data collected on modern instrumentation should be used to reliably calculate BVSs and G values.

Funder

National Science Foundation, Directorate for Mathematical and Physical Sciences

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3