Two cadmium(II) fluorous coordination compounds tuned by different bipyridines

Author:

Kong Ya-Jie,Li Peng,Han Li-Juan,Fan Lu-Tong,Li Peng-Peng,Yin Shuang

Abstract

Fluorine is the most electronegative element and can be used as an excellent hydrogen-bond acceptor. Fluorous coordination compounds exhibit several advantageous properties, such as enhanced high thermal and oxidative stability, low polarity, weak intermolecular interactions and a small surface tension compared to hydrocarbons. C—H...F—C interactions, although weak, play a significant role in regulating the arrangement of the organic molecules in the crystalline state and stabilizing the secondary structure. Two cadmium(II) fluorous coordination compounds formed from 2,2′-bipyridine, 4,4′-bipyridine and pentafluorobenzoate ligands, namely catena-poly[[aqua(2,2′-bipyridine-κ2 N,N′)(2,3,4,5,6-pentafluorobenzoato-κO)cadmium(II)]-μ-2,3,4,5,6-pentafluorobenzoato-κ2 O:O′], [Cd(C7F5O2)2(C10H8N2)(H2O)] n , (1), and catena-poly[[diaquabis(2,3,4,5,6-pentafluorobenzoato-κO)cadmium(II)]-μ-4,4′-bipyridine-κ2 N:N′], [Cd(C7F5O2)2(C10H8N2)(H2O)2] n , (2), have been synthesized solvothermally and structurally characterized. Compound (1) shows a one-dimensional chain structure composed of Cd—O coordination bonds and is stabilized by π–π stacking and O—H...O hydrogen-bond interactions. Compound (2) displays a one-dimensional linear chain structure formed by Cd—N coordination interactions involving the 4,4′-bipyridine ligand. Adjacent one-dimensional chains are extended into two-dimensional sheets by O—H...O hydrogen bonds between the coordinated water molecules and adjacent carboxylate groups. Moreover, the chains are further linked by C—H...F—C interactions to afford a three-dimensional network. In both structures, hydrogen bonding involving the coordinated water molecules is a primary driving force in the formation of the supramolecular structures.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Talent Culturing Plan for Leading Disciplines of University in Shandong Province

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3