Author:
McKee Vickie,Kose Muhammet
Abstract
In this work, a series of seven MnII complexes of noncyclic flexible ligands derived from 2,6-diformylpyridine and ethanolamine or alkyl-substituted ethanolamines were prepared and characterized, six structurally by single-crystal X-ray diffraction studies. The complexes are dichlorido{2,2′-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]diethanol}manganese(II), [MnCl2(C11H15N3O2)] or [MnCl2(L1)], (2), bis{μ-2,2′-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]diethanol}bis[dithiocyanatomanganese(II)], [Mn2(NCS)4(C11H15N3O2)2] or [Mn2(NCS)4(L1)2], (3), chlorido{1,1′-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]bis(propan-2-ol)}manganese(II) chloride monohydrate, [MnCl(C13H19N3O2)(H2O)]Cl·H2O or [MnCl(L2)(H2O)]Cl·H2O, (4), {1,1′-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]bis(propan-2-ol)}dithiocyanatomanganese(II), [Mn(NCS)2(C13H19N3O2)] or [Mn(NCS)2(L2)], (5), aquadichlorido{2,2′-dimethyl-2,2′-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]bis(propan-1-ol)}manganese(II) 0.3-hydrate, [MnCl2(C15H23N3O2)(H2O)]·0.3H2O or [MnCl2(L3)(H2O)]·0.3H2O, (6), (dimethylformamide){2,2′-dimethyl-2,2′-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]bis(propan-1-ol)}dithiocyanatomanganese(II), [Mn(NCS)2(C15H23N3O2)(C3H7NO)] or [Mn(NCS)2(L3)(DMF)], (7), and (dimethylformamide){2,2′-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]bis(butan-1-ol)}dithiocyanatomanganese(II) dimethylformamide monosolvate, [Mn(NCS)2(C15H23N3O2)(C3H7NO)]·C3H7NO or [Mn(NCS)2(L4)(DMF)]·DMF, (8). The crystal structure of ligand L1 is also reported, but that of (5) is not. All four ligands (L1–L4) have five potential donor atoms in an N3O2 donor set, i.e. three N (pyridine/diimine donors) and two alcohol O atoms, to coordinate the MnII centre. The N3O2 donor set coordinates to the metal centre in a pentagonal planar arrangement; seven-coordinated MnII complexes were obtained via coordination of two auxiliary ligands (anions or water molecules) at the axial positions. However, in some cases, the alcohol O-atom donors remain uncoordinated, resulting in five- or six-coordinated MnII complexes. The structurally characterized complexes were tested for their catalytic scavenging of superoxide and peroxide. The results indicated that the complexes with coordinated exogenous water or chloride ligands showed higher SOD activity than those with exogenous thiocyanate ligands.
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics