Unique octahedral rotation pattern in the oxygen-deficient Ruddlesden–Popper compound Gd3Ba2Fe4O12

Author:

Urushihara Daisuke,Nakajima Kenta,Nakamura Ariki,Fukuda KoichiroORCID,Sugai Hodaka,Konishi Shinya,Tanaka Katsuhisa,Asaka ToruORCID

Abstract

A novel Ruddlesden–Popper-related compound, Gd3Ba2Fe4O12, was discovered and its crystal structure was determined via single-crystal X-ray diffraction. The structure has an ordered structure of octahedra and pyramids along the c axis. Gd3Ba2Fe4O12 belongs to the tetragonal system P42/ncm, with a = 5.59040 (10) Å and c = 35.1899 (10) Å. The A-site ions in the Ruddlesden–Popper structure, i.e. Gd3+ and Ba2+, exhibit an ordering along the c axis. The perfect oxygen deficiency is accommodated at the GdO layers in the proper Ruddlesden–Popper structure. Using the bond-valence-sum method, the Fe ions in the FeO6 octahedra and FeO5 pyramids represent valence states of +3 and +2.5, respectively, demonstrating a two-dimensional charge disproportionation. The corner-sharing FeO6 octahedra and FeO5 pyramids are tilted in opposite directions, with the neighbours around one axis of the simple perovskite configuration, which, using Glazer's notation, can be represented as a b 0 c 0/b 0 a c 0. In the perovskite blocks, the facing FeO5 pyramids across the Gd layer rotate in the same sense, which is a unique rotation feature related to oxygen deficiency.

Funder

JSPS KAKENHI

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3