The solid-state structure of the β-blocker metoprolol: a combined experimental and in silico investigation

Author:

Rossi Patrizia,Paoli Paola,Chelazzi Laura,Conti LucaORCID,Bencini Andrea

Abstract

Metoprolol {systematic name: (RS)-1-isopropylamino-3-[4-(2-methoxyethyl)phenoxy]propan-2-ol}, C15H25NO3, is a cardioselective β1-adrenergic blocking agent that shares part of its molecular skeleton with a large number of other β-blockers. Results from its solid-state characterization by single-crystal and variable-temperature powder X-ray diffraction and differential scanning calorimetry are presented. Its molecular and crystal arrangements have been further investigated by molecular modelling, by a Cambridge Structural Database (CSD) survey and by Hirshfeld surface analysis. In the crystal, the side arm bearing the isopropyl group, which is common to other β-blockers, adopts an all-trans conformation, which is the most stable arrangement from modelling data. The crystal packing of metoprolol is dominated by an O—H...N/N...H—O pair of hydrogen bonds (as also confirmed by a Hirshfeld surface analysis), which gives rise to chains containing alternating R and S metoprolol molecules extending along the b axis, supplemented by a weaker O...H—N/N—H...O pair of interactions. In addition, within the same stack of molecules, a C—H...O contact, partially oriented along the b and c axes, links homochiral molecules. Amongst the solid-state structures of molecules structurally related to metoprolol deposited in the CSD, the β-blocker drug betaxolol shows the closest analogy in terms of three-dimensional arrangement and interactions. Notwithstanding their close similarity, the crystal lattices of the two drugs respond differently on increasing temperature: metoprolol expands anisotropically, while for betaxolol, an isotropic thermal expansion is observed.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3