Author:
Titi Hatem M.,Goldberg Israel
Abstract
We report on the synthesis of a new metal–organic framework (MOF) composed of Sn(OCH3)2–tetrakis(pyridin-4-yl)porphyrin linkers, Cu+connecting nodes and [CuCl2]−counter-ions, namely poly[[bis(methanolato-κO)[μ5-5,10,15,20-tetrakis(pyridin-4-yl)porphyrin-κ81κN5:1′κN10:1′′κN15:1′′′κN20:2κ4N21,N22,N23,N24]copper(I)tin(II)] dichloridocuprate(I)], [CuSn(C40H24N8)(CH3O)2][CuCl2]. Its crystal structure consists of a single-framework coordination polymer of the organic ligand and the CuIions. The latter are characterized by a tetrahedral coordination geometry [with CN (coordination number) = 4], linking to the pyridyl N-atom sites of four different ligands and imparting to the positively charged polymeric assembly a diamondoid PtS-type topology. Correspondingly, every porphyrin unit is coordinated to four different CuIconnectors. The [CuCl2]−anions occupy the intra-lattice voids, along with disordered molecules of the water crystallization solvent. The asymmetric unit of this structure consists of two halves of the porphyrin scaffold, located on centres of crystallographic inversion, and the Cu+and [CuCl2]−ions. This report provides unique structural evidence for the formation of tetrapyridylporphyrin-based three-dimensional MOFs with a diamondoid architecture that have been observed earlier only on rare occasions.
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献