A fourfold interpenetrating cadmium(II) metal–organic framework based on 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine with reversible photochromic properties

Author:

Liu Jian-Jun,Li Li-Zhi,Chen Chun-Ping,Wei Jin-Zhong,Cheng Fei-Xiang

Abstract

2,4,6-Tris(pyridin-4-yl)-1,3,5-triazine (tpt), as an organic molecule with an electron-deficient nature, has attracted considerable interest because of its photoinduced electron transfer from neutral organic molecules to form stable anionic radicals. This makes it an excellent candidate as an organic linker in the construction of photochromic complexes. Such a photochromic three-dimensional (3D) metal–organic framework (MOF) has been prepared using this ligand. Crystallization of tpt with Cd(NO3)2·4H2O in an N,N-dimethylacetamide–methanol mixed-solvent system under solvothermal conditions afforded the 3D MOF poly[[bis(nitrato-κ2 O,O′)cadmium(II)]-μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine-κ3 N 2:N 4:N 6], [Cd(NO3)2(C18H12N6)] n , which was characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis and single-crystal X-ray diffraction. The X-ray diffraction crystal structure analysis reveals that the asymmetric unit contains one independent CdII cation, one tpt ligand and two coordinated NO3 anions. The CdII cations are connected by tpt ligands to generate a 3D framework. The single framework leaves voids that are filled by mutual interpenetration of three independent equivalent frameworks in a fourfold interpenetrating architecture. The compound shows a good thermal stability and exhibits a reversible photochromic behaviour, which may originate from the photoinduced electron-transfer generation of radicals in the tpt ligand.

Funder

Yunnan Province Thousand Youth Talents Plan, Application Basis Research Project of Yunnan Province Science and Technology Department

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3