Supramolecular interactions in some organic hydrated 2,4,6-triaminopyrimidinium carboxylate and sulfate salts

Author:

Sangavi Marimuthu,Kumaraguru Narayanasamy,McMillen Colin D.ORCID,Butcher Ray J.ORCID

Abstract

Four salts, namely, 2,4,6-triaminopyrimidinium 6-chloronicotinate dihydrate, C4H8N5 +·C6H3ClNO2 ·2H2O, (I), 2,4,6-triaminopyrimidinediium pyridine-2,6-dicarboxylate dihydrate, C4H9N5 2+·C7H3NO4 2−·2H2O, (II), 2,4,6-triaminopyrimidinediium sulfate monohydrate, C4H9N5 2+·SO4 2−·H2O, (III), and 2,4,6-triaminopyrimidinium 3,5-dinitrobenzoate dihydrate, C4H8N5 +·C7H3N2O6 ·2H2O, (IV), were synthesized and characterized by X-ray diffraction techniques. Proton transfer from the corresponding acid to the pyrimidine base has occurred in all four crystal structures. Of the four salts, two [(I) and (IV)] exist as monoprotonated bases and two [(II) and (III)] exist as diprotonated bases. In all four crystal structures, the acid interacts with the pyrimidine base through N—H...O hydrogen bonds, generating an R 2 2(8) ring motif. The sulfate group mimics the role of the carboxylate anions. The water molecules present in compounds (I)–(IV) form water-mediated large ring motifs. The formation of water-mediated interactions in these crystal structures can be used as a model in the study of the hydration of nucleobases. Water molecules play an important role in building supramolecular structures. In addition to these strong hydrogen-bonding interactions, some of the crystal structures are further enriched by aromatic π–π stacking interactions [(I) and (II)].

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3