Abstract
The design and preparation of chiral metal–organic frameworks (CMOFs) from achiral ligands are a big challenge. Using 3-nitro-4-(pyridin-4-yl)benzoic acid (HL) as a new linker, a total of eight chiral lanthanide–organic frameworks (LOFs), namely poly[diaquatris[μ2-3-nitro-4-(pyridin-4-yl)benzoato-κ2
O:O′]lanthanide(III)], L- and D-[Ln(C12H7N2O4)3(H2O)2]
n
[(1), Ln = Eu; (2), Ln = Gd; (3), Ln = Dy; (4), Ln = Tb], were hydrothermally synthesized without chiral reagents and determined by X-ray crystallography. Crystal structure analyses show that L-(1)–(4) crystallize in the hexagonal P65 space group and are isomorphous and isostructural, while the enantiomers D-(1)–(4) crystallize in the hexagonal P61 space group. All LnIII ions are octacoordinated by six carboxyl O atoms of six 3-nitro-4-(pyridin-4-yl)benzoate ligands and two water molecules in a dodecahedral geometry. A one-dimensional neutral helical [Ln2(CO2)3]
n
chain is observed in (1)–(4) as a chiral origin. These helical chains are further interconnected via directional hydrogen-bonding interactions between pyridyl groups and water molecules to construct a three-dimensional (3D) homochiral network with hex topology. The present CMOF structure is the first chiral 3D hydrogen-bonded hex-net and shows good water stability. Solid-state circular dichroism (CD) signals revealed that (1)–(4) crystallized through spontaneous resolution. Furthermore, (1) and (4) display a strong red and green photoluminescence at room temperature, respectively, but their intensities reduce to almost half at 200 °C. Notably, upon excitation under visible light (463 nm), a circularly polarized luminescence (CPL) of (1) in the solid state is observed for the first time, with a g
lum value of 2.61 × 10−2.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献