Author:
Rutherford Ryan Noboru,Ura Shinji,Chan Tak-Hang,Fukumoto Kozo,Nishioka Takanori,Renzetti Andrea
Abstract
(−)-Epigallocatechin gallate (EGCG), the main component of green tea extract, displays multiple biological activities. However, it cannot be used as a drug due to its low cellular absorption, instability and metabolic degradation. Therefore, there is a need to provide analogs that can overcome the limitations of EGCG. In this work, six synthetic analogs of EGCG sharing a common tetralindiol dibenzoate core were synthesized and fully characterized by 1H NMR, 13C NMR, HRMS and IR spectroscopies, and X-ray crystallography. These are (2R,3S)-1,2,3,4-tetrahydronaphthalene-2,3-diyl bis[3,4,5-tris(benzyloxy)benzoate], C66H56O10, and the analogous esters bis(3,4,5-trimethoxybenzoate), C30H32O10, bis(3,4,5-trifluorobenzoate), C24H14F6O4, bis[4-(benzyloxy)benzoate], C38H32O6, bis(4-methoxybenzoate), C26H24O6, and bis(2,4,6-trifluorobenzoate), C24H14F6O4. Structural analysis revealed that the molecular shapes of these dibenzoate esters of tetralindiol are significantly different from that of previously reported dimandelate esters or monobenzoate esters, as the acid moieties extend far from the bicyclic system without folding back over the tetralin fragment. Compounds with small fluorine substituents take a V-shape, whereas larger methoxy and benzyloxy groups determine the formation of an L-shape or a cavity. Intermolecular interactions are dominated by π–π stacking and C—H...π interactions involving the arene rings in the benzoate fragment and the arene ring in the tetrahydronaphthalene moiety. All six crystal structures are determined in centrosymmetric space groups (either P-1, P21/n, C2/c or I2/a).
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献