Reversible phase transition of 2-carboxypyridinium perchlorate–pyridinium-2-carboxylate (1/1)

Author:

Wang Bi-Qin,Yan Hai-Biao,Huang Zheng-Qing,Zhang Yun-Hua,Sun Jing

Abstract

The title salt, C6H6NO2+·ClO4·C6H5NO2, was crystallized from an aqueous solution of equimolar quantities of perchloric acid and pyridine-2-carboxylic acid. Differential scanning calorimetry (DSC) measurements show that the compound undergoes a reversible phase transition at about 261.7 K, with a wide heat hysteresis of 21.9 K. The lower-temperature polymorph (denoted LT;T= 223 K) crystallizes in the space groupC2/c, while the higher-temperature polymorph (denoted RT;T= 296 K) crystallizes in the space groupP2/c. The relationship between these two phases can be described as: 2aRT=aLT; 2bRT=bLT;cRT=cLT. The crystal structure contains an infinite zigzag hydrogen-bonded chain network of 2-carboxypyridinium cations. The most distinct difference between the higher (RT) and lower (LT) temperature phases is the change in dihedral angle between the planes of the carboxylic acid group and the pyridinium ring, which leads to the formation of different ten-membered hydrogen-bonded rings. In the RT phase, both the perchlorate anions and the hydrogen-bonded H atom within the carboxylic acid group are disordered. The disordered H atom is located on a twofold rotation axis. In the LT phase, the asymmetric unit is composed of two 2-carboxypyridinium cations, half an ordered perchlorate anion with ideal tetrahedral geometry and a disordered perchlorate anion. The phase transition is attributable to the order–disorder transition of half of the perchlorate anions.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crystal structures of two 1:2 dihydrate compounds of chloranilic acid with 2-carboxypyridine and 2-carboxyquinoline;Acta Crystallographica Section E Crystallographic Communications;2017-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3