Structural phase transition in a charge-transfer compound: tropylium hexafluoridoantimonate(V)–1,4-dimethylnaphthalene (1/1)

Author:

Liao Rong-Meng,An Zhen,Ye Heng-YunORCID

Abstract

Molecular motion in crystals has attracted much attention for the development of stimuli-responsive materials. The most studied are molecules with few atoms or highly symmetrical molecules. To develop molecules with new motion characteristics, we synthesized a charge-transfer compound, namely, tropylium hexafluoridoantimonate(V)–1,4-dimethylnaphthalene (1/1), (C7H7)[SbF6]·C12H12, and studied its structural phase transition. In this compound, the tropylium cation and the 1,4-dimethylnaphthalene molecule have planar geometry, but the latter has low symmetry. They are stacked as a one-dimensional chain structure through π–π charge-transfer interactions. Weak intermolecular interactions and planar molecular geometry result in a large degree of freedom of in-plane motion. Upon heating, due to the in-plane rotation of the molecules, the compound undergoes an order–disorder structural phase transition (phase-transition temperature = 334 K). The space group of the room-temperature phase is P21/m and the space group of the high-temperature phase is P4/mmm. This phase transition is accompanied by significant dielectric anomalies. The current investigation shows that the structural features of the title compound can be used to construct functional materials with phase transitions, such as molecular ferroelectrics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3