An efficient one-pot synthesis of pyrazole complexes formed in situ: synthesis, crystal structure, Hirshfeld surface analysis and in vitro biological properties

Author:

Adach Anna,Tyszka-Czochara MałgorzataORCID,Daszkiewicz MarekORCID

Abstract

The molecular crystals of monomeric and dimeric pyrazole complexes were prepared via one-pot syntheses. These are dichloridobis(3,5-dimethyl-1H-pyrazole-κN 1)cobalt/zinc(0.2/0.8), [Co0.20Zn0.80Cl2(C5H8N2)2] or [Co0.2Zn0.8Cl2(3,5-dmp)2] (1), and bis(μ-3,5-dimethyl-1H-pyrazole)-κ2 N 1:N 22 N 2:N 1-bis[bromido/chlorido(0.7/0.3)bis(3,5-dimethyl-1H-pyrazole-κN 1)cobalt/zinc(0.1/0.9)], [Co0.20Zn1.80Br1.40Cl0.60(C5H7N2)2(C5H8N2)2] or [Co0.1Zn0.9Br0.7Cl0.3(μ-3,5-dmp)(3,5-dmp)]2 (2). The isolated complexes contain 3,5-dimethylpyrazole (3,5-dmp) ligands formed in situ from the decomposition of 1-hydroxymethyl-3,5-dimethylpyrazole. In both isolated complexes, some positional disorder is observed at the metal ions and halogen ligands. The molecular crystals of 1 and 2 are centrosymmetric, with the space groups C2/c and P-1, respectively. Additionally, in the dinuclear complex, the pyrazole ring has a bridging coordination function with respect to the metal ions. Both complexes have good biological activities against cancer cells. The results of an in vitro cytotoxicity study indicated that compounds 1 and 2 showed significant cytotoxicity for cancer cell lines, including hepatic (HepG2 cells), lung (A549 cells) and colon cancer cells (SW 480 and SW 620). Based on the calculated IC50 values against human cancer cell lines, it was found that both complexes demonstrated potent antiproliferative activity combined with great selectivity towards cancer cells. Complex 2 was a more effective cytotoxic agent which, at the same time, exhibited high cytocompatibility. The obtained data are very encouraging and could be useful for anticancer drug discovery.

Funder

Institute of Low Temperature and Structure Research, Polish Academy of Sciences

Uniwersytet Jana Kochanowskiego w Kielcach

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3