Supramolecular structures of rhenium(I) complexes mediated by ligand planarity via the interplay of substituents

Author:

Mark-Lee Wun FuiORCID,Chong Yan YiORCID,Kassim Mohammad B.ORCID

Abstract

The crystal and molecular structures of two ReI tricarbonyl complexes, namely fac-tricarbonylchlorido[1-(4-fluorocinnamoyl)-3-(pyridin-2-yl-κN)pyrazole-κN 2]rhenium(I), [ReCl(C17H12FN3O)(CO)3], (I), and fac-tricarbonylchlorido[1-(4-nitrocinnamoyl)-3-(pyridin-2-yl-κN)pyrazole-κN 2]rhenium(I) acetone monosolvate, [ReCl(C17H12ClN4O3)(CO)3]·C3H6O, (II), are reported. The complexes form centrosymmetric dimers that are linked into one-dimensional columns by C—H...Cl and N—O...H interactions in (I) and (II), respectively. C—H...Cl interactions in (II) generate two R 2 1(7) loops that merge into a single R 2 1(10) loop. These interactions involve the alkene, pyrazole and benzene rings, hence restricting the ligand rotation and giving rise to a planar conformation. Unlike (II), complex (I) exhibits a twisted conformation of the ligand and a pair of molecules forms a centrosymmetric dimer with an R 2 2(10) loop via C—H...O interactions. The unique supramolecular structures of (I) and (II) are determined by their planarity and weak interactions. The planar conformation of (II) provides a base for appreciable π–π stacking interactions compared to (I). In addition, an N—O...π interaction stabilizes the supramolecular structure of (II). We report herein the first n→π* interactions of ReI tricarbonyl complexes, which account for 0.33 kJ mol−1. Intermolecular C—H...Cl and C—H...O interactions are present in both complexes, with (II) showing a greater preference for these interactions compared to (I), with cumulative contributions of 48.7 and 41.5%, respectively. The influence of inductive (fluoro) and/or resonance (nitro) effects on the π-stacking ability was further supported by LOLIPOP (localized orbital locator-integrated π over plane) analysis. The benzene ring of (II) demonstrated a higher π-stacking ability compared to that of (I), which is supported by the intrinsic planar geometry. The HOMA (harmonic oscillator model of aromaticity) index of (I) revealed more aromaticity with respect to (II), suggesting that NO2 greatly perturbed the aromaticity. The Hirshfeld fingerprint (FP) plots revealed the preference of (II) over (I) for π–π contacts, with contributions of 6.8 and 4.4%, respectively.

Funder

Ministry of Higher Education, Malaysia

Universiti Kebangsaan Malaysia

Kementerian Sains, Teknologi dan Inovasi

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3