Crystal structure and optical properties of a two-sited EuIII compound: an EuIII ion coordinated by two [EuIII(DOTA)]− complexes (DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate)

Author:

Thomsen Maria Storm,Madsen Anders Ø.ORCID,Sørensen Thomas Just

Abstract

The structure and solid-state luminescence properties of an EuIII compound with two different lanthanide sites, [Eu(μ-O)5(OH)(H2O)2][Eu(DOTA)(H2O)]2 (DOTA is 1,4,7,10-tetrazacyclododecane-1,4,7,10-tetraacetate, C16H24N4O8), were determined. The compound crystallizes in a laminar structure in the triclinic space group P\overline{1}, where the two sites are a free europium(III) ion and an [Eu(DOTA)(H2O)] complex. The crystal structure was determined using complex data treatment due to nonmerohedral twinning. Experimental data sets were recorded with large redundancy and separated according to scattering domains in order to obtain a reliable structure. In the first site, the [Eu(DOTA)(H2O)] complex was found to adopt a capped twisted square-antiprismatic (cTSAP) conformation, where a capping water molecule increased the coordination number of the europium(III) site to nine (CN = 9). In the second site, the europium(III) ion was found to be coordinated by two water molecules, one hydroxide group and five oxide groups from neighbouring [Eu(DOTA)(H2O)] complexes. The coordination geometry of this site was found to be a compressed square antiprism (SAP) and the coordination number of the europium(III) ion was found to be eight (CN = 8). A large increase in the rate constant of luminescence was observed for EuIII in [Eu(DOTA)(H2O)] in solid-state luminescence spectroscopy measurements compared to in solution, which led to investigations of single crystals in deuterated media to exclude additional effects of quenching. We conclude that the most probable cause of the decrease in the observed luminescence lifetimes is the high asymmetry of the coordination environment of [Eu(DOTA)(D2O)] in the [Eu(μ-O)5(OD)(D2O)2][Eu(DOTA)(D2O)]2 crystals.

Funder

Carlsbergfondet, Villum Fonden

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3