Enhanced π-back-donation resulting in the trans labilization of a pyridine ligand in an N-heterocyclic carbene (NHC) PdII precatalyst: a case study

Author:

Karabıyık HandeORCID,Yiğit Beyhan,Yiğit Murat,Özdemir İsmail,Karabıyık Hasan

Abstract

The molecular structure of the benzimidazol-2-ylidene–PdCl2–pyridine-type PEPPSI (pyridine-enhanced precatalyst, preparation, stabilization and initiation) complex {1,3-bis[2-(diisopropylamino)ethyl]benzimidazol-2-ylidene-κC 2}dichlorido(pyridine-κN)palladium(II), [PdCl2(C5H5N)(C23H40N4)], has been characterized by elemental analysis, IR and NMR spectroscopy, and natural bond orbital (NBO) and charge decomposition analysis (CDA). Cambridge Structural Database (CSD) searches were used to understand the structural characteristics of the PEPPSI complexes in comparison with the usual N-heterocyclic carbene (NHC) complexes. The presence of weak C—H...Cl-type hydrogen-bond and π–π stacking interactions between benzene rings were verified using NCI plots and Hirshfeld surface analysis. The preferred method in the CDA of PEPPSI complexes is to separate their geometries into only two fragments, i.e. the bulky NHC ligand and the remaining fragment. In this study, the geometry of the PEPPSI complex is separated into five fragments, namely benzimidazol-2-ylidene (Bimy), two chlorides, pyridine (Py) and the PdII ion. Thus, the individual roles of the Pd atom and the Py ligand in the donation and back-donation mechanisms have been clearly revealed. The NHC ligand in the PEPPSI complex in this study acts as a strong σ-donor with a considerable amount of π-back-donation from Pd to Ccarbene. The electron-poor character of PdII is supported by π-back-donation from the Pd centre and the weakness of the Pd—N(Py) bond. According to CSD searches, Bimy ligands in PEPPSI complexes have a stronger σ-donating ability than imidazol-2-ylidene ligands in PEPPSI complexes.

Funder

Dokuz Eylul University

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3