Mono- and binuclear tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl)hydroborate bismuth(III) dichloride complexes: a soft scorpionate ligand can coordinate top-block elements

Author:

Fujisawa Kiyoshi,Kuboniwa Ayaka,Kiss Mercedesz,Szilagyi Robert K.

Abstract

Tris(pyrazolyl)hydroborate ligands have been utilized in the fields of inorganic and coordination chemistry due to the ease of introduction of steric and electronic substitutions at the pyrazole rings. The development and use of the tris(pyrazolyl)hydroborate ligand, called a `scorpionate', were pioneered by the late Professor Swiatoslaw Trofimenko. He developed a second generation for his ligand system by the introduction of 3-tert-butyl and 3-phenyl substituents and this new ligand system accounted for many remarkable developments in inorganic and coordination chemistry in stabilizing monomeric species while maintaining an open coordination site. Bismuth is remarkably harmless among the toxic heavy metalp-block elements and is now becoming popular as a replacement for highly toxic metal elements, such as lead. Two bismuth(III) complexes of the anionic sulfur-containing tripod tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl)hydroborate ligand were prepared. By recrystallization from MeOH/CH2Cl2, orange crystals of dichlorido(methanol-κO)[tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl-κS)hydroborato]bismuth(III), [Bi(C21H34BN6S3)Cl2(CH4O)], (I), were obtained, manifesting a mononuclear structure. By using a noncoordinating solvent, red crystals of the binuclear structure with bridging Cl atoms were obtained, namely di-μ-chlorido-bis{chlorido[tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl-κS)hydroborato]bismuth(III)}, [Bi2(C21H34BN6S3)2Cl4], (II). These complexes show {BiIIIS3Cl2O} and {BiIIIS3Cl3} coordination geometries with average BiIII—S bond lengths of 2.73 and 2.78 Å in (I) and (II), respectively. The overall BiIIIcoordination geometry is distorted octahedral due to stereochemically active lone pairs. The three BiIII—S bond lengths are almost equal in (I) but show considerable differences in (II), with one long and two shorter distances that also correlate with changes in the UV–Vis and1H NMR spectra. For direct measurements of the Bi—S/Cl coordination, ligand K-edge X-ray absorption measurements were carried out in combination with ground and excited-state electronic structure analyses. Forp-block elements, these sulfur-containing ligands are useful for preparing the appropriate complexes due to their flexible coordination geometry.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3