Chiral one-dimensional hydrogen-bonded architectures constructed from single-enantiomer phosphoric triamides

Author:

Eghbali Toularoud Mahsa,Pourayoubi MehrdadORCID,Dušek MichalORCID,Eigner Václav,Damodaran KrishnanORCID

Abstract

The two single-enantiomer phosphoric triamides N-(2,6-difluorobenzoyl)-N′,N′′-bis[(S)-(−)-α-methylbenzyl]phosphoric triamide, [2,6-F2-C6H3C(O)NH][(S)-(−)-(C6H5)CH(CH3)NH]2P(O), denoted L-1, and N-(2,6-difluorobenzoyl)-N′,N′′-bis[(R)-(+)-α-methylbenzyl]phosphoric triamide, [2,6-F2-C6H3C(O)NH][(R)-(+)-(C6H5)CH(CH3)NH]2P(O), denoted D-1, both C23H24F2N3O2P, have been investigated. In their structures, chiral one-dimensional hydrogen-bonded architectures are formed along [100], mediated by relatively strong N—H...O(P) and N—H...O(C) hydrogen bonds. Both assemblies include the noncentrosymmetric graph-set motifs R 2 2(10), R 2 1(6) and C 2 2(8), and the compounds crystallize in the chiral space group P1. Due to the data collection of L-1 at 120 K and of D-1 at 95 K, the unit-cell dimensions and volume show a slight difference; the contraction in the volume of D-1 with respect to that in L-1 is about 0.3%. The asymmetric units of both structures consist of two independent phosphoric triamide molecules, with the main difference being seen in one of the torsion angles in the OPNHCH(CH3)(C6H5) part. The Hirshfeld surface maps of these levo and dextro isomers are very similar; however, they are near mirror images of each other. For both structures, the full fingerprint plot of each symmetry-independent molecule shows an almost asymmetric shape as a result of its different environment in the crystal packing. It is notable that NMR spectroscopy could distinguish between compounds L-1 and D-1 that have different relative stereocentres; however, the differences in chemical shifts between them were found to be about 0.02 to 0.001 ppm under calibrated temperature conditions. In each molecule, the two chiral parts are also different in NMR media, in which chemical shifts and P–H and P–C couplings have been studied.

Funder

Czech Science Foundation

Ferdowsi University of Mashhad

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3