A new P,S-coordinating ferrocenyl ligand: synthesis of a precursor and its coordination compounds with PdII and PtII

Author:

Mouas Toma Nardjes,Daran Jean-ClaudeORCID,Merazig Hocine,Manoury Eric

Abstract

In our ongoing development of ferrocene ligands, 1-dimethylamino-2-(diphenylphosphinothioyl)ferrocene is being used as a convenient building block to obtain racemic or enantiomerically pure ligands. Using this building block in large excess allowed the formation of several by-products, two of which have already been reported; the structure of a third by-product, namely 1-(diphenylphosphinothioyl)-2-{[(diphenylphosphinothioyl)sulfanyl]methyl}ferrocene, [Fe(C5H5)(C30H25P2S3)], is presented here. The crystal structure is built up from a ferrocene unit, with one of the cyclopentadienyl (Cp) rings substituted in the 1- and 2-positions by a protected diphenylphosphinothioyl group and a [(diphenylphosphinothioyl)sulfanyl]methyl fragment, –CH2SP(=S)Ph2. There are C—H...S interactions which result in the formation of chains parallel to the c axis. After desulfurization, the crude material was then reacted with Pd and Pt (M) precursors [MCl2(CH3CN)2] to yield two isostructural dinuclear complexes arranged around twofold axes, namely (R,R/S,S)-bis{μ-[2-(diphenylphosphanyl)ferrocen-1-yl]methanethiolato-κ3 P,S:S}bis[chloridopalladium(II)] pentane disolvate, [Pd2{Fe(C5H5)(C18H15PS)}2Cl2]·2C5H12, and the platinum(II) analogue, (R,R/S,S)-bis{μ-[2-(diphenylphosphanyl)ferrocen-1-yl]methanethiolato-κ3 P,S:S}bis[chloridoplatinum(II)] toluene monosolvate, [Pt2{Fe(C5H5)(C18H15PS)}2Cl2]·C7H8, in which the two metal atoms present a slightly distorted square-planar geometry formed by two bridging S atoms and P and Cl atoms. The P,S-chelating ligand results from the rupture of one of the P—S bonds in the starting ligand. These dinuclear complexes display a butterfly geometry. Surprisingly, only the (R,R/S,S) diastereoisomer has been isolated.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3