The many flavours of halogen bonds – message from experimental electron density and Raman spectroscopy

Author:

Wang Ruimin,George JanineORCID,Potts Shannon Kimberly,Kremer Marius,Dronskowski RichardORCID,Englert UlliORCID

Abstract

Experimental electron-density studies based on high-resolution diffraction experiments allow halogen bonds between heavy halogens to be classified. The topological properties of the electron density in Cl...Cl contacts vary smoothly as a function of the interaction distance. The situation is less straightforward for halogen bonds between iodine and small electronegative nucleophiles, such as nitrogen or oxygen, where the electron density in the bond critical point does not simply increase for shorter distances. The number of successful charge–density studies involving iodine is small, but at least individual examples for three cases have been observed. (a) Very short halogen bonds between electron-rich nucleophiles and heavy halogen atoms resemble three-centre–four-electron bonds, with a rather symmetric heavy halogen and without an appreciable σ hole. (b) For a narrow intermediate range of halogen bonds, the asymmetric electronic situation for the heavy halogen with a pronounced σ hole leads to rather low electron density in the (3,−1) critical point of the halogen bond; the properties of this bond critical point cannot fully describe the nature of the associated interaction. (c) For longer and presumably weaker contacts, the electron density in the halogen bond critical point is only to a minor extent reduced by the presence of the σ hole and hence may be higher than in the aforementioned case. In addition to the electron density and its derived properties, the halogen–carbon bond distance opposite to the σ hole and the Raman frequency for the associated vibration emerge as alternative criteria to gauge the halogen-bond strength. We find exceptionally long C—I distances for tetrafluorodiiodobenzene molecules in cocrystals with short halogen bonds and a significant red shift for their Raman vibrations.

Funder

Deutsche Forschungsgemeinschaft

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3