Abstract
Cocrystallization is a phenomenon widely used to enhance the biological and physicochemical properties of active pharmaceutical ingredients (APIs). The present study deals with the synthesis of a cocrystal of coumarin-3-carboxylic acid (2-oxochromene-3-carboxylic acid, C10H6O4), a synthetic analogue of the naturally occurring antioxidant coumarin, with thiourea (CH4N2S) using the neat grinding method. The purity and homogeneity of the coumarin-3-carboxylic acid–thiourea (1/1) cocrystal was confirmed by single-crystal X-ray diffraction, FT–IR analysis and thermal stability studies based on differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Detailed geometry analysis via density functional theory (DFT) demonstrated that the 1:1 cocrystal stoichiometry is sustained by N—H...O hydrogen bonding between the amine (–NH2) groups of thiourea and the carbonyl group of coumarin. The synthesized cocrystal exhibited potent antioxidant activity (IC50 = 127.9 ± 5.95 µM) in a DPPH radical scavenger assay in vitro in comparison with the standard N-acetyl-L-cysteine (IC50 = 111.6 ± 2.4 µM). The promising results of the present study highlight the significance of cocrystallization as a crystal engineering tool to improve the efficacy of pharmaceutical ingredients.
Funder
UK Research and Innovation via the Global Challenges Research Fund under grant agreement `A Global Network for Neglected Tropical Diseases'
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献