The first silver bismuth borate, AgBi2B5O11

Author:

Volkov SergeyORCID,Charkin Dmitri,Bubnova RimmaORCID,Povolotskiy AlexeyORCID,Arsent'ev Maxim,Krzhizhanovskay Maria,Stefanovich Sergey,Ugolkov Valery,Kurilenko Ludmila

Abstract

The first silver bismuth borate, AgBi2B5O11 (silver dibismuth pentaborate), has been prepared via glass crystallization in the Ag2O–Bi2O3–B2O3 system and characterized by single-crystal X-ray diffraction. Its structure is derived from that of centrosymmetric Bi3B5O12 by ordered substitution of one Bi3+ ion for Ag+, which results in the disappearance of the mirror plane and inversion centre. Second harmonic generation (SHG) measurements confirm the acentric crystal structure. It is formed by [Bi2B5O11] layers stretched along c and comprised of vertex-sharing B5O10 and BiO3 groups which incorporate the Ag+ cations. The new compound was characterized by thermal analysis, high-temperature powder X-ray diffraction, and vibrational and UV–Vis–NIR (near infrared) spectroscopy. Its thermal expansion is strongly anisotropic due to the presence of rigid B5O10 groups aligned in a parallel manner. The minimal value is observed along their axis [parallel to c, α c  = 3.1 (1) × 10−6 K−1], while maximal values are observed in the ab plane [α a = 20.4 (2) and α b = 7.8 (2) × 10−6 K−1]. Upon heating, AgBi2B5O11 starts to decay above 684 K due to partial reduction of silver; incongruent melting is observed at 861 K. According to density functional theory (DFT) band-structure calculations, the new compound is a semiconductor with an indirect energy gap of 3.57 eV, which agrees with the experimental data (absorption onset at 380 nm).

Funder

Russian Science Foundation

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3